

1 Seasonal source variability of carbonaceous aerosols at the Rwanda 2 climate Observatory

3

4 August Andersson¹, Elena N Kirillova^{1,2}, Stefano Decesari², Langley DeWitt³, Jimmy Gasore^{3,4,5},
5 Katherine E Potter³, Ronald G Prinn³, Maheswar Rupakheti⁶, Jean de Dieu Ndikubwimana⁴, Julius
6 Nkusi⁴, Bonfils Safari⁵.

7 ¹ Department of Environmental Science and Analytical Chemistry (ACES) and the Bolin Centre
8 for Climate Research, Stockholm University, SE-10691 Stockholm, Sweden

9 ² Institute of Atmospheric Sciences and Climate-ISAC, National Research Council of Italy,
10 Bologna, Italy

11 ³ Center for Global Change Science, Massachusetts Institute of Technology, Cambridge, MA,
12 USA

13 ⁴ Climate Secretariat, Ministry of Education, Kigali, Rwanda

14 ⁵ Physics Department, School of Physics, College of Science and Technology, University of
15 Rwanda, Kigali, Rwanda

16 ⁶ Institute for Advanced Sustainability Studies (IASS), Potsdam, Germany

17

18 **Correspondence:** August Andersson (august.andersson@aces.su.se)

19 **Abstract**

20 Sub-Saharan Africa (SSA) is a global hotspot for aerosol emissions, affecting regional
21 environmental sustainability. In this paper we use atmospheric observations to address one of the
22 major uncertainties of the, e.g., climate and health impact of SSA aerosols: the quantitative
23 contributions from different emissions sources. Ambient fine fraction aerosol (PM_{2.5}) were
24 collected on filters at the high altitude (2590 m.a.s.l.) Rwanda Climate Observatory (RCO), an
25 SSA background site, during dry and wet seasons in 2014 and 2015. The concentrations of both
26 carbonaceous aerosols and inorganic ions show a strong seasonal cycle, with highly elevated
27 concentrations during the dry season. Source marker ratios, including carbon isotopes, show that
28 the wet and dry seasons have distinct aerosol compositions. The dry season is characterized by
29 elevated amounts of biomass burning products, approaching ~ 95% for carbonaceous aerosols. An
30 isotopic mass-balance estimate shows that the amount of the carbonaceous aerosols stemming
31 from savanna fires may increase from ~ 0.6 µg/m³ in the wet season up to ~10µg/m³ during the
32 dry season. Taken together, we here quantitatively show that savanna fire is the key modulator of
33 the seasonal aerosol composition variability at the RCO, an SSA background site.

34 **1. Introduction**

35 Sub-Saharan Africa (SSA) currently face major challenges for sustainable development, including
36 industrial development, agriculture, fresh water supply, climate change, energy resources and air
37 pollution (IPCC 2014; UNDP, 2018). Either directly, or indirectly, these challenges have linkage
38 to aerosol emissions. Aerosols offset the ongoing regional climate warming in SSA, shift monsoon
39 and precipitation pattern, are linked to both manmade (e.g., industry, traffic and agriculture) and
40 ecosystem emissions, and are detrimental for air quality (IPCC 2013; WHO 2016). Ambient air
41 pollution in SSA is estimated to cause 563.000 premature deaths annually, making it one of the
42 main causes for mortality in the region (Bauer et al., 2019). However, the level of scientific
43 understanding of the sources, properties and impacts of aerosols is not in parity with the multi-
44 faceted societal impact. Central to this offset is the complex aerosol lifecycle, where emissions,
45 transformations and sinks all are associated with large uncertainties, in particular given the vast
46 physical and chemical complexity of these colloids. A major limiting factor in improving our
47 understanding of these effects in the SSA are the limited number of in situ observations (Williams,
48 2007; Cais et al., 2011; Kulmala, 2018; López-Ballesteros et al., 2018).

49 A major source of aerosol emissions in SSA are dry season regional fires – clearly visible from
50 space (Fig. 1). These may either be formed naturally, e.g., lightning strikes, but are mainly lit by
51 humans (Bird and Cali, 1998; Archibald et al., 2012). There is evidence that slash-and-burn
52 agriculture in SSA has been a common practice for thousands of years. This long-term
53 anthropogenic perturbation is a significant modulator of the current ecosystem structure. A number
54 of previous studies have been specifically focused on characterizing emissions of aerosols and
55 gases from African fires, e.g., the Southern African Regional Science Initiative Project (SAFARI
56 2000), conducted between 1999 to 2001 (Swap et al., 2003). Ground- and airborne chemical
57 characterization from this and other campaigns suggest a rather distinct chemical composition
58 (Table 1).

59 Carbonaceous aerosols, often quantified as total carbon (TC), are generally divided into two main
60 components: black carbon (BC; here we use elemental carbon (EC) to quantify the amounts of
61 BC) and organic carbon (OC). Although overlapping to some extent, these two pools generally
62 have quite different atmospheric lifecycles and environmental effects. Formed from incomplete
63 combustion, sunlight-absorbing BC contributes to regional warming and is a particularly health

64 detrimental component in air pollution (WHO 2012; WMO/UNEP 2011; IPCC 2013; Bond et al.,
65 BC is chemically inert to atmospheric reactions, and thus the lifetime is mainly determined
66 by deposition. OC is also emitted from incomplete combustion (with different emission factors)
67 but is also emitted from non-combustion sources and is also formed in the air through secondary
68 processes. OC is thought to have an overall cooling effect on the climate. Being more chemically
69 reactive, the OC pool to some extent has a more complex atmospheric lifetime, with continuous
70 heterogenous chemistry, rendering the lifetime dependent on both precipitation and chemical
71 transformations. Emissions from SSA fires are expected to contribute to a large part of the total
72 TC atmospheric burden.

73 In general, the actual environmental impact of TC on SSA is still poorly constrained. Bottom-up
74 emissions projections suggests that the TC emissions from SSA are expected to increase rapidly
75 during the coming decades, perhaps reaching 50% of the global OC burden by 2030 (Liousse et
76 al., 2014). To quantify and evaluate such model predictions, as well as to characterize the overall
77 aerosol composition, it is valuable to conduct measurements at regional background sites. Dual
78 carbon isotope characterization ($\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$) of TC at background sites in South and East Asia
79 and the Arctic has been shown to be a valuable tool for quantitatively constraining the emissions
80 from different sources (Gustafsson et al., 2009; Andersson et al., 2015; Sheesley et al., 2012;
81 Kirillova et al., 2014; Winiger et al., 2019).

82 In this paper we present dual carbon isotope constraints of TC, along with chemical
83 characterization of inorganic ions and different carbonaceous pools, from a study conducted at the
84 Rwanda Climate Observatory (RCO), during October 2014 to September 2015. A key objective
85 of the study was to estimate the relative contributions from major TC source categories at this
86 regionally representative site in the SSA. In particular, we investigate the source variability
87 associated with the seasonal variations between prevailing wet and dry monsoon periods in the
88 region and the contributions from savanna fires.

89

90 **2. Methods and Materials**

91 **2.1 Filter sampling**

92 The sampling site, the Rwanda Climate Observatory (RCO), is located on the top of Mt. Mugogo,
93 in the western mountainous Rwanda. (1.586° S, 29.566° E, 2590 m above sea level, 5 m above
94 ground). The station was established as a collaboration between the Massachusetts Institute of
95 Technology (MIT, USA) and the Rwandan Government in 2013. The station is described in more
96 detail by DeWitt et al. (2019). The station is an Advanced Global Atmospheric Gases Experiment
97 (AGAGE) network site (for full list of instruments see <http://agage.mit.edu>).

98 Quartz filter samples (Millpores, 150 mm diam) were collected with a high-volume sampler (DH-
99 77, Digitel Inc. Switzerland) operating at $30\text{m}^3\text{ h}^{-1}$ using a PM_{2.5} inlet. Night-time only (1AM to
100 6AM) sampling was conducted to minimize the effects of local emissions and day-time local
101 atmospheric chemistry and to increase likelihood to capture the regional, free troposphere, signals.
102 This strategy is supported by high temporal investigations of the diurnal cycle of, e.g., BC (DeWitt
103 et al., 2019). The filter-samples were pre-combusted together with aluminum foil envelopes
104 (400°C for 5h), and were treated with special attention to minimize contamination. The filter
105 samples were subsequently shipped to Stockholm University for chemical/isotopic analysis. The
106 samples were stored in freezers both on site and at Stockholm University. Field blanks were
107 collected on a monthly basis. The present campaign covers the period October 2014 to September
108 2015. However, the period December 2014 to April 2015 is missing due to a lightning strike which
109 damaged the instrument. Thus, this study presents results from analysis of filter samples (in total
110 25) collected for the periods that cover the beginning of the 2014 fall rainy season (Oct-Nov), the
111 end of the spring 2015 rainy season (April – May) and the dry 2015 summer season (June –
112 September). We jointly refer the October-November 2014 and the April-May 2015 periods as the
113 wet periods.

114 2.2 Concentrations analysis

115 The concentrations of elemental carbon (EC – mass-based tracer for black carbon) and organic
116 carbon (OC) were determined using a Sunset Inc. thermal-optical instrument using the NIOSH
117 4050 protocol (Birch and Cary, 1996; Table S1). Pre-treatment using acid fumigation with 1M
118 HCl ensured efficient removal of carbonates. A glucose solution was used to calibrate the FID-
119 response of the instrument, and the long-term performance of the instrument was checked through
120 running of National Institute of Standards and Technology (NIST) Standard Reference Materials
121 (SRM) standards. All the concentrations were blank corrected and the field blank input was on

122 average 2% for OC and 0% for EC. The average relative standard deviation of the triplicate
123 analysis was 5% for OC, 7% for EC.

124 Water-soluble organic carbon (WSOC) was extracted from filter sub-samples in ultra-pure Milli-
125 Q water through 1.5 hour shaking. The extracts were filtered using 0.45 μm cutoff PTFE syringe
126 filters (Minisart-SRP 10, Sartorius Stedim biotech, Germany). The concentration of WSOC was
127 quantified in the filtered solutions as a difference between total water-soluble carbon and water-
128 soluble inorganic carbon using a high temperature catalytic oxidation instrument TOC-5000A
129 (Shimadzu, Japan). The samples were neither acidified nor purged, to avoid the loss of volatile
130 organic compounds. The accuracy of the measurement ranges from 7% for 1 $\text{mg}\cdot\text{L}^{-1}$ of carbon
131 solution to 3% for concentrations higher than 2 $\text{mg}\cdot\text{L}^{-1}$ of carbon. All the measurements were blank
132 corrected. WSOC field blanks corresponded to an average 0.5%. The average relative standard
133 deviation of the triplicate analysis was 10%.

134 The concentrations of water-soluble inorganic anions were determined by ion chromatography
135 using a Dionex ICS-2000 system. Anions were separated using an IonPac AG11 2x50 mm Dionex
136 guard column, IonPac AS11 2x250 mm Dionex separation column and ASRS 300 self-
137 regenerating suppressor. A solution of KOH was used as eluent. Cations were separated using an
138 IonPac CG16 3x50 mm Dionex guard column, IonPac CS11 3x250 mm Dionex separation column
139 and CSRS 300 self-regenerating suppressor. The analysis of cations was performed using 30 mM
140 solution of MSA as eluent. Field blanks constituted on average 3% of NO_3^- , 2% of SO_4^{2-} and 1%
141 of NH_4^+ and K^+ ion concentrations. The triplicate analysis showed the average relative standard
142 deviation of 2% for NO_3^- and K^+ , 5% for SO_4^{2-} and 6% for NH_4^+ .

143

144 2.3 Isotope analysis

145 Approximately every second sample ($n = 12$) were selected for carbon isotope ($\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$)
146 analysis of total carbon ($\text{TC} = \text{OC} + \text{EC}$; Table S1). The filter samples were combusted using the
147 Sunset analyzer (total carbon protocol) and the evolved CO_2 was collected in glass vials using a
148 liquid nitrogen cryo-trap (e.g., Andersson et al., 2015). The vials were subsequently shipped to the
149 National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility at the Woods Hole
150 Oceanographic Institute for analysis of the dual carbon isotope signatures. The $\Delta^{14}\text{C}$ -signature was

151 measured using accelerator mass spectrometry (AMS), while the $\delta^{13}\text{C}$ -signature was measured
152 using an Isotope Ratio Mass Spectrometer (IRMS).

153

154 2.4 Source Apportionment

155 The $\Delta^{14}\text{C}$ -signature allows the differentiation between the relative contributions of
156 biogenic/biomass burning and fossil sources. The fraction biogenic/biomass burning (f_{bio}) may be
157 calculated using isotopic mass-balance ($f_{\text{fossil}} = 1 - f_{\text{bio}}$):

$$158 \Delta^{14}\text{C}_{\text{sample}} = f_{\text{bio}} \cdot \Delta^{14}\text{C}_{\text{bio}} + (1 - f_{\text{bio}}) \cdot \Delta^{14}\text{C}_{\text{fossil}} \quad (1)$$

159 The fossil endmember is $-1000\text{\textperthousand}$, as it is completely depleted in ^{14}C . The biomass endmember is
160 more complex. For annual plants it is fairly straight-forward: the biomass $\Delta^{14}\text{C}$ -signature equals
161 the $\Delta^{14}\text{C}$ value of CO_2 for that year ($\sim +20\text{\textperthousand}$ for 2014/15, Graven, 2015; Turnbull et al., 2017).
162 For more long-lived species (e.g., trees) the $\Delta^{14}\text{C}$ -signature is the average of the atmospheric CO_2
163 values (weighted by yearly carbon accumulation) over the plants' lifetime. Bottom-up estimation
164 of $\Delta^{14}\text{C}_{\text{bio}}$ therefore requires information regarding the plant distribution in the area of interest, and
165 the annual bioaccumulation of carbon for the different plants. As an alternative we here use the
166 combined $\Delta^{14}\text{C}$ -signature of dissolved organic carbon (DOC) in three of the regions' major rivers,
167 Congo, Zambezi and Tana, to obtain a regional $\Delta^{14}\text{C}_{\text{bio}} +57 \pm 52\text{\textperthousand}$, which is well in the expected
168 range of a mixture of annual and multi-year plants (Marwick et al., 2015; Wild et al., 2019, Winiger
169 et al., 2019).

170 The vegetation in SSA may be divided into two main classes: C_3 -plants and C_4 -plants – see
171 discussion in Section 3.5. These two groups have distinct $\delta^{13}\text{C}$ -signatures, and may therefore be
172 separated. We may then resolve three source classes by combining $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$: C_3 -plants, C_4 -
173 plants and fossil, through isotopic mass-balance (Andersson et al., 2015):

$$174 \begin{pmatrix} \Delta^{14}\text{C} \\ \delta^{13}\text{C} \\ 1 \end{pmatrix} = \begin{pmatrix} \Delta^{14}\text{C}_{\text{C}_3} & \Delta^{14}\text{C}_{\text{C}_4} & \Delta^{14}\text{C}_{\text{fossil}} \\ \delta^{13}\text{C}_{\text{C}_3} & \delta^{13}\text{C}_{\text{C}_4} & \delta^{13}\text{C}_{\text{fossil}} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_{\text{C}_3} \\ f_{\text{C}_4} \\ f_{\text{fossil}} \end{pmatrix} \quad (2)$$

175 Endmember variability may significantly influence the calculated source fractional contributions
176 (Andersson, 2011). For a discussion on the specific endmember ranges used here, see Section 3.5.

177 To account for the endmember variability, we implement a Bayesian approach, numerically
178 resolve through Markov chain Monte Carlo simulations, implemented in Matlab, ver. 2015b
179 (Andersson et al., 2015).

180

181 2.5 Remote Sensing and Air Mass Back trajectories.

182 Hourly 7-day air mass back trajectories (arrival height 2600 m.a.s.l.) were calculated using the
183 NOAA Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Remote
184 sensing fire-spot detections were retrieved from the NASA Fire Information for Resource
185 Management Services (FIRMS) database, based on retrievals from the Moderate Resolution
186 Imaging Spectroradiometer (MODIS) satellite product.

187

188 3 Results and Discussion

189 3.1 Rwanda and the monsoon

190 The meteorology of Rwanda is governed by the East African monsoon, with peak rainfalls in in
191 April and November. There are thus two dry seasons, December-January-February (DJF) and the
192 main dry season June-July-August (JJA). The dry periods in SSA are characterized by extensive
193 biomass burning. During DJF the fires mainly occur to the north of Rwanda, and during JJA to the
194 south (Fig. 1). Savannas are the main biomes in SSA, covering ~ 65% of the landmass, and are the
195 main source of fire emissions (Cahoon et al., 1992). Located in a highly elevated region, Rwanda
196 is, broadly speaking, surrounded by savanna regions, except to the west, where the tropical
197 rainforests of Africa are located.

198 Air mass back trajectory analysis suggests that the air masses during the filter collection periods
199 are overall easterly (Fig. 1). There is some overlap between the wet and JJA periods, but overall
200 there is a seasonal switch, where the wet periods are more of northeastern origins (e.g., Kenya,
201 Ethiopia and Somalia), whereas the dry JJA is more directly eastern/southeastern (e.g., Kenya,
202 Tanzania). During JJA there are extensive fires to the south of RCO, mainly to the south-west.
203 Given the easterly air mass transport, RCO is thus in general not directly downwind of these source
204 regions. However, given the comparably low non-fire background emissions during this time, the

205 influence may still be significant; BT analysis is highly challenging in mountainous regions (e.g.,
206 Winiger et al., 2019), and the actual geographical footprints would be broader when, e.g.,
207 incorporating parametrizations for turbulence. Here we interpret the BTs qualitatively to visualize
208 overall air mass transport patterns.

209

210 3.2 Concentrations of fine aerosol components

211 During the present campaign, the PM_{2.5} carbonaceous and inorganic ion components show a strong
212 seasonal variability, with elevated levels during the dry JJA period (Fig. 2, Table S1). The dry/wet
213 period ratios for TC, EC, WSOC, NO₃⁻, SO₄²⁻, NH₄⁺ and K⁺, were 4.2, 7.0, 4.1, 12.6, 3.0, 3.2 and
214 8.8, respectively. This variability suggests differences in the aerosol regime, in addition to
215 seasonality in meteorology, e.g., varying boundary layer heights or precipitation. The sea-salt
216 contributions to the ions are overall estimated to be less than 1%, based on corrections with sodium
217 ions (Blanchard and Woodcock, 1980). We here report the actual concentrations to ease direct
218 comparisons with previous studies. Overall these differences reflect differences in aerosol
219 atmospheric lifetime, differences in air mass transport pathways and seasonality in emissions (e.g.,
220 fires), as well as other factors. Elevated ratios of EC and K⁺ suggests an increased influence from
221 biomass burning during the dry season. NO₃⁻ - which displays the largest seasonal shift - is often
222 associated with oxidized NO_x from traffic emissions or lightning strikes. However, it has also has
223 also been shown to be elevated during savanna burning events (Table 1).

224 The dry season concentrations of the carbonaceous aerosols components and inorganic ions
225 observed here are overall in good agreement with the concentrations observed dry season rural and
226 aged savanna fire air masses (Table 1). The BC values are in the same range as has previously
227 been observed at Mt. Kenya ($0.72 \pm 0.06 \mu\text{gC m}^{-3}$, Gatari et al., 2003). During atmospheric aging
228 of a biomass plume, the values of OC, EC and K⁺ decrease by a factor of 2-3, whereas other
229 components are ~ un-affected (Table 1). However, the effects appear variable, as compared with
230 savanna fires in South Africa (Gao et al., 2003).

231 RCO is situated not far away from the downwind Nyiargongo and Nyamuragria Volcanoes in
232 eastern Democratic Republic of Congo. Satellite-monitoring of the SO₂ emissions from these
233 volcanoes show a near-constant activity over the time period covering the present campaign,

234 potentially affecting the observed sulfate levels (Barrière et al., 2017). Here we observe an
235 elevation in sulfate levels ($\sim 5\mu\text{g m}^{-3}$) during the week starting of the 13th of June 2015 (Fig. 2),
236 potentially indicating influence from volcanic emissions, but with no clear linkage to an increase
237 in activity.

238

239 3.3 Source marker ratios and correlations

240 Overall, the ratios of different aerosol components provide insights into sources or atmospheric
241 processes. Here, the OC/EC-ratio shows a distinct seasonality, with elevated levels during the wet
242 season (11 ± 3) compared to the dry season (7 ± 3 ; Fig. 3; Table S1). The OC/EC-ratio is sometimes
243 used as a marker for biomass burning, but it is highly influenced by atmospheric processes such
244 as secondary organic aerosol (SOA) formation or photo-chemical aging (e.g., Dasari et al., 2019).
245 The dry season values observed here are similar to what has been observed in background air at
246 other dry season Sub-Saharan African sites (Table 1). The elevated wet-season OC/EC-ratios may
247 indicate increased relative influence of local SOA formation.

248 Similarly, the NH_4^+/TC and $\text{SO}_4^{2-}/\text{TC}$ are also elevated during the wet periods (Fig. 3), while
249 decrease during the dry seasons, suggesting a different source profile compared to EC, K^+ and
250 NO_3^- . In contrast, the WSOC/OC-ratio shows no clear seasonality, indicating that the sources and
251 atmospheric processing of water-soluble and water-insoluble organic components are not changing
252 significantly over the year. TC correlates with K^+ ($R^2 = 0.95$, $p < 0.01$) and NO_3^- ($R^2 = 0.95$, $p < 0.01$),
253 suggesting that the incomplete combustion regime during the present campaign is governed by
254 biomass burning emissions, e.g., savanna burning. Taken together, these ratios qualitatively
255 suggest that the aerosol regime at RCO is strongly influenced by a pulse of biomass burning
256 products during the JJA dry period.

257

258 3.4 Carbon isotopes

259 Radiocarbon ($\Delta^{14}\text{C}$) and stable-carbon ($\delta^{13}\text{C}$) provides detailed information regarding the sources
260 and atmospheric processing of carbonaceous aerosols. Here, we investigated the signatures of TC
261 for roughly every second sample during the campaign. The $\Delta^{14}\text{C}$ -marker is not influenced by

262 atmospheric processing, and may be used to compute the relative contributions of fossil vs
263 biomass/biogenic sources with high precision, Eq. (1). The $\Delta^{14}\text{C}$ -signature show an oscillation
264 over the seasons (Fig. 4), ranging between $-84\text{\textperthousand}$ (November, 2014) and $+30\text{\textperthousand}$ (July, 2015; Fig.
265 4; Table S1). Thus, during the JJA period, the $\Delta^{14}\text{C}$ -signature occasionally exceed the signature
266 for atmospheric CO_2 ($+20\text{\textperthousand}$, Graven, 2015; Turnbull, 2017).

267 Using Equation (1), the fraction biomass/biogenic TC for this sample is 97%. During the wet
268 season, the fraction fossil reaches 13%, possibly of a more local character. $\Delta^{14}\text{C}$ correlates with
269 $1/\text{TC}$ ($R^2 = 0.85$, $p < 0.01$), suggesting a two-state source mixing regime between and background
270 signal and a temporally varying source (Keeling, 1958, Fig. 4C). This inverse relation gives $\Delta^{14}\text{C}$
271 $= +37 \pm 6\text{\textperthousand}$ as $\text{TC} \rightarrow \infty$, showing that the non-background state is dominated by biogenic/biomass
272 burning emissions. The $\Delta^{14}\text{C}$ -signatures for TC reported here are overall higher than what has been
273 reported at receptor sites in South and East Asia (Sheesley et al., 2012; Kirillova et al., 2014;
274 Bikkina et al., 2016).

275 In contrast to $\Delta^{14}\text{C}$, the $\delta^{13}\text{C}$ -ratio is influenced by both atmospheric processes and atmospheric
276 signatures. Here, the $\delta^{13}\text{C}$ -ratio shows a similar pattern relative to the $\Delta^{14}\text{C}$ -ratio, depleted (min -
277 27%) during wet periods, and enriched during JJA (max $\sim -21\text{\textperthousand}$). The $^{13}\text{C}/^{12}\text{C}$ -ratio, has overall
278 been found to be more enriched in aged air masses in South Asia, especially for WSOC (Sheesley
279 et al., 2012; Kirillova et al., 2013). However, less so for TC. In fact, the enrichment of $\delta^{13}\text{C}$ in
280 WSOC often appears to be counter-acted by the depletion in water-insoluble OC (e.g., Yan et al.,
281 2017; Fang et al., 2017).

282 The TC $\delta^{13}\text{C}$ values, and their seasonal trend, are similar to what has previously observed in fine
283 aerosols at a rural site in Tanzania (May – August, 2011, Mkoma, et al., 2014). However, the
284 temporal trend appears shifted: for RCO from values around $-25\text{\textperthousand}$ to a $\sim 22\text{\textperthousand}$ around mid-May.
285 At the Tanzanian site, a similar shift occurs in mid-June. In addition to the measurements being
286 conducted at different sites during different years, there is a good agreement, and the temporal
287 offset may be explained by ITCZ position variability. Similarly, the $\delta^{13}\text{C}$ for TC at savanna
288 woodland site in Zambia, observed during August-September 2000, was $-21.8 \pm 0.8\text{\textperthousand}$ (Billmark
289 et al., 2003), while values between -19.3 and $-23.6\text{\textperthousand}$ were observed at sites in the Ivory Coast
290 (Cachier et al., 1985).

291

292 3.5. Carbon isotope-based source apportionment

293 By combining the $\Delta^{14}\text{C}$ and the $\delta^{13}\text{C}$ -ratios we can by isotopic mass balance resolve three major
294 sources of TC at the RCO. However, there are some important considerations to this approach:
295 (1.) The $\delta^{13}\text{C}$ -ratio is not an exclusive source marker, but is also affected by atmospheric
296 processing (e.g., photo-chemical oxidation and secondary formation). (2.) The main source
297 categories must be defined and distinguishable with carbon isotopes (3.) The source values of the
298 isotope-signatures – the endmembers – and their natural variability need to be established.

299 As mentioned, the $\delta^{13}\text{C}$ -ratio of bulk TC appears to be considerably less affected by atmospheric
300 processing compared to sub-components, such as WSOC. Here, the temporal variation of the $\delta^{13}\text{C}$ -
301 ratio is qualitatively similar to that of $\Delta^{14}\text{C}$ -ratio (Fig. 4). Since $\Delta^{14}\text{C}$ is not affected by atmospheric
302 reactions, this suggests that source variability is a key driver of the $\delta^{13}\text{C}$ variability. Furthermore,
303 the WSOC/OC is virtually constant throughout the year; the WSOC/OC-ratio has been found to
304 be highly affected by atmospheric processing and related to shifting $\delta^{13}\text{C}$ (Kirillova et al., 2013;
305 Yan et al., 2017; Fang et al., 2018; Dasari, 2019). Here, we therefore assume that the $\delta^{13}\text{C}$ -ratio of
306 TC is not strongly perturbed by atmospheric processing, and may thus be used as a source marker.

307 Turning to potential sources, there is a multitude of potential source categories for TC in SSA.
308 However, many of these falls in broader categories, with similar carbon isotopic signatures.
309 Around the world, the applications of dual carbon isotopes in ambient TC mainly
310 identified/considered 6 broad source categories: C₃ plants, C₄ plants, liquid fossil (e.g., traffic),
311 coal combustion (solid fossil), gas flaring (gaseous fossil) and marine emissions (Winiger et al.,
312 2019; Andersson et al., 2015; Kirillova et al., 2013). Overall, the practice of coal combustion in
313 SSA is expected to be much less frequent than in, e.g., South and East Asia, and we therefore do
314 not consider this source further. In addition, marine emissions are not expected to have a large
315 influence at RCO, supported by the low estimates of marine contributions to the inorganic ions
316 (<1%). For gas flaring, there are potential distant sources around the Arabian Peninsula and off
317 the west coast of Africa, in the Gulf of Guinea. However, given the distances to the RCO station
318 and the prevailing wind directions, emissions from flaring are not expected to affect the site.

319 The remaining three main source categories are the two biomass sources of C₃ (e.g., trees) and C₄
320 plants (e.g., sugarcane and certain grasses) and liquid fossil. Aerosols from liquid fossil sources
321 have a $\Delta^{14}\text{C}_{\text{fossil}} = -1000\text{\textperthousand}$ (completely depleted in ¹⁴C) and a $\delta^{13}\text{C}_{\text{fossil}} = -25.5 \pm 1.3\text{\textperthousand}$ (Widory,
322 2006; Andersson et al., 2015). The $\Delta^{14}\text{C}$ of biomass was established in Section 2.4, and we set:
323 $\Delta^{14}\text{C}_{\text{C}3} = \Delta^{14}\text{C}_{\text{C}4} = +57 \pm 52\text{\textperthousand}$. The $\delta^{13}\text{C}$ of C₃-plants in general is $-27.1 \pm 2\text{\textperthousand}$ (Bender, 1971;
324 O’Leary, 1988). However, for aerosols generated from C₃-plants this value may be either enriched
325 (e.g., $\sim 0.5\text{\textperthousand}$ biomass burning) or depleted (e.g., ~ 0 to 4\textperthousand during SOA formation) (Turekian,
326 1998; Das et al. 2010, Mkoma et al., 2014; Aguilera and Whigham, 2018). In any case, the
327 numerical spread in the $\delta^{13}\text{C}$ of these different scenarios are largely overlapping with that of the
328 raw materials, and we therefore use this value here. The $\delta^{13}\text{C}$ of C₄-plants is $-13.1 \pm 1.2\text{\textperthousand}$ (Bender,
329 1971; O’Leary, 1988; Turekian 1998). During incomplete combustion, the $\delta^{13}\text{C}_{\text{C}4}$ may be depleted
330 by a factor ranging between 0 to 7%, largely dependent on burning conditions and different species
331 (Martinelli, 2002; Das et al., 2010; Aguilera and Whigham, 2018). To account for these effects,
332 we set $\delta^{13}\text{C}_{\text{C}4}$: $-16.6 \pm 2.2\text{\textperthousand}$, where the standard deviation is propagated from the variability of the
333 raw plant signature and one fourth of the maximum spread (7%) of the depletion ($\sigma^2 = 1.2^2 +$
334 $(7/4)^2$).

335 The fractional source contributions of fossil, C₃ and C₄ to TC may then be solved using these
336 endmembers, using Eq. (2), (Fig. 5). It is well-established that accurate estimation of the fractional
337 source contributions requires explicit incorporation of the endmember variability, and we here use
338 a Bayesian framework driven by Markov chain Monte Carlo simulations for this purpose
339 (Andersson, 2011; Andersson et al., 2015). The resulting fractional contributions display a large
340 variability when comparing wet and dry conditions (Fig. 6A; Table S2). The dry season is
341 characterized by relatively higher C₄-plant contributions, whereas the relative contributions of
342 fossil and C₃-plants are higher during the wet periods. By combining the estimated fractional
343 source contributions with the TC concentrations, we can estimate the concentrations from the
344 different sources (Fig. 6B), revealing a more accentuated source variability. The average dry-to-
345 wet ratios of the TC concentrations for C₃-plants, C₄-plants and fossil are 3, 4 and 2, respectively.

346 Savannas are the main biome for C₄-plants in SSA. For East African savannas, $\delta^{13}\text{C}$ data suggests
347 that $\sim 62\%$ ($f_{\text{C}4,\text{NPP}}$) of the net primary production (NPP) is from C₄-plants (the rest mainly C₃-
348 plants, Lloyd et al., 2008). Thus, one may assume that the source characteristics of TC emitted

349 from savanna burning should represent this plant-signature distribution. However, the aerosol
350 emissions modulate the NPP activity by differences in emissions factors (EF). The uncertainties
351 of EFs from different biomass burning activities are generally large and overlapping (Andreae,
352 2019). As a first approximation, we here use $f_{C4,NPP}$ to estimate the fractional contribution of
353 savanna emissions to TC ($f_{savanna}$) as (i = sample index):

$$354 \quad f_{savanna}(i) = \frac{f_{C4}(i)}{f_{C4,NPP}} \quad (3)$$

355 This analysis shows that the dry season carbonaceous aerosol regime is dominated by savanna fire
356 emissions (Fig. 6), reaching up to 71%. These results agree with the elevated levels of EC, K⁺ and
357 NO₃⁻ during JJA.

358

359 5. Outlook

360 In this paper we find that the aerosol regime of the emissions affecting the Rwanda Climate
361 Observatory (RCO) may be described as a two-state source mixture: a regional/local background
362 signal modulated by savanna fire emissions. Multiple studies have shown that savanna fires
363 strongly influence the aerosol regime in SSA. Here, we quantify the savanna fire contributions for
364 carbonaceous aerosols to range from 50% (wet period; TC_{savanna} = 0.63 µg m⁻³) to 71% (dry period;
365 TC_{savanna} = 9.7 µg m⁻³) at a mountain background site in central SSA. The savanna fires are believed
366 to be mainly lit by humans, and although these activities have been ongoing perhaps throughout
367 the Holocene, these anthropogenic activities strongly perturb, e.g., the regional ecosystems,
368 climate and air quality (e.g., Bird and Cali, 1998; Archibald et al., 1998). The annual SSA savanna
369 carbon budget is a slight net CO₂ source to the atmosphere (Still et al., 2003; Williams, 2007; Cais
370 et al., 2011; Valentini et al., 2014; Palmer et al., 2019). Finding more sustainable alternatives to
371 the slash-and-burn practices in SSA may turn the region into a carbon sink. For instance,
372 implementation of early dry season burning may be a possible strategy (Lipset-Moore et al., 2018).
373 Savanna fire mitigation would also improve the regional air quality and stabilize precipitation
374 patterns, but could also accelerate climate change by reducing cloud brightening (Hodnebrog et
375 al., 2015; Lu et al., 2018; Heft-Neal et al., 2018; Bauer et al., 2019; Haslett et al., 2019).

376 Nevertheless, our current level of scientific understanding of the impact of savanna burning on the
377 environmental system is poor, as are the couplings/responses to climate change, population
378 growth, urbanization and other key socio-economic and environmental challenges for sustainable
379 development in SSA (e.g., IPCC, 2014; Liousse et al., 2015; Brandt et al., 2017; UNDP, 2018).
380 Savanna burning mitigation, or induced shifts due to, e.g., climate change, may change the present
381 steady-state in unpredictable ways (e.g., Abreu et al., 2017). To better constrain the multiple
382 environmental impacts of savanna burning in SSA, the comparably few ongoing ground-based in
383 situ observations should be expanded and solidified (Williams, 2007; Cais et al., 2011; Kulmala,
384 2018; López-Ballesteros et al., 2018). For instance, observations of source-segregated aerosol
385 concentrations provides multiple opportunities for advancing our knowledge base on SSA,
386 including means for testing chemical-transport models; quantifying the relative importance of
387 different atmospheric processes/emissions; assessing air quality effects; examining the relative
388 importance of cooling vs warming (e.g., BC) aerosols; ground-truthing remote sensing products
389 and detailed monitoring of the expected rapid change over the coming decades, including the
390 effects of climate warming, population growth and urbanization.

391

392 *Data availability:* The chemical and isotopic data, as well as the MCMC-derived relative source
393 contributions of C₃-plants, C₄-plants and fossil, and the corresponding source-segregated TC
394 concentrations is provided in the supplementary information.

395

396 *Competing interests:* The authors declare that they have no conflict of interest.

397

398 *Author contributions:* AA wrote the manuscript, set-up the PM_{2.5} high-volume sampler at RCO,
399 and analyzed the data. ENK and SD conducted the carbonaceous aerosol quantifications and
400 isolations for isotopes, and IC analysis. JG worked with the instruments, including helping or
401 leading installation, and provided feedback on data analysis. KEP was instrumental in setting up
402 the RCO and did most of the initial instrument installation. HLD served as the RCO station chief
403 scientist for three years. JN and JdDN worked as technical coordinators of the project at different
404 times and facilitated the operations of the station as well as providing feedback on analysis. BS

405 was our University of Rwanda liaison as the head of the Master's program in atmospheric and
406 climate science. RGP is the head of the AGAGE network and is the MIT liaison to the RCO, and
407 was essential in the setup of the observatory and scientific analysis. All authors commented on the
408 manuscript.

409

410 *Acknowledgements.* We thank the generous MIT alumni donors to the MIT-Rwanda Climate
411 Observatory Project that provided the funds to purchase, develop, and install most of the
412 instruments at the Rwanda Climate Observatory. Additional funds for this purpose were provided
413 by the MIT Center for Global Change Science. COMESA provided the funds to purchase and
414 install the Aethalometer at the RCO. We also thank the Government of Rwanda and the Rwanda
415 Ministry of Education, specifically Mike Hughes, Vianney Rugamba, and Marie Christine
416 Gasingirwa, for supporting this project, including funding the staffing and infrastructure costs of
417 the Rwanda Climate Observatory, and the University of Rwanda for providing laboratory space
418 and infrastructure for instrument testing. We also wish to acknowledge the essential contributions
419 of the Mugogo station technical experts Theobard Habineza, Modeste Mugabo, Olivier Shyaka,
420 and Gaston Munyampundu and RBA technician Yves Fidele, without which running this station
421 would be impossible. AA acknowledges project grants from the Swedish Research council
422 (projects 348-2013-114 and 2017-05687). ENK acknowledges the People Programme (Marie
423 Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under
424 REA grant agreement 623386. We acknowledge the use of data and imagery from LANCE FIRMS
425 operated by NASA's Earth Science Data and Information System (ESDIS) with funding provided
426 by NASA Headquarters. The authors gratefully acknowledge the NOAA Air Resources
427 Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or
428 READY website (<http://www.ready.noaa.gov>) used in this publication.

429 **References**

430 Abreu, R.C., Hoffmann, W.A., Vasconcelos, H.L., Pilo, N.A., Rossatto, D.R., Durigan, G.: The
431 biodiversity cost of carbon sequestration in tropical savanna. *Sci. Advan.* 3, doi:
432 10.1126/sciadv.1701284, 2017.

433 Aguilera, J., Whigham, L.D.: Using the $^{13}\text{C}/^{12}\text{C}$ carbon isotope ratio to characterize the emission
434 sources of airborne particulate matter: a review of literature. *Isotopes Environ. Health. Stud* 54,
435 573-587, doi: 10.1080/10256016.2018.1531854, 2018.

436 Andersson, A.: A systematic examination of a random sampling strategy for source apportionment
437 calculations. *Sci. Tot. Environ.* 412-413, 232-238, doi: 10.1016/j.scitotenv.2011.031, 2011.

438 Andersson, A., Deng, J., Du, K., Zheng, M., Yan, C., Sköld, M., Gustafsson, Ö.: Regionally-
439 varying combustion sources of the January 2013 severe haze events over Eastern China. *Environ.*
440 *Sci. Technol.* 49, 2038-2043, doi: 10.1021/es503855e, 2015.

441 Andreae, M.O.: Emission of trace gases and aerosols from biomass burning – An updated
442 assessment. *Atmos. Chem. Phys. Discuss.* doi: 10.5194/acp-2019-303, 2019.

443 Archibald, S., Staver, A.C., Levin, S.A.: Evolution of human-driven fire regimes in Africa. *Proc.*
444 *Nat. Acad. Sci.* 109, 847-852, doi: 10.1073/pnas.1118648109, 2012.

445 Aurela, M., Beukes, J.P., van Zyl, P., Vakkari, V., Teinilä, K., Saarikoski, S., Laakso, L.: The
446 composition of ambient and fresh biomass: burning aerosols at a savannah site, South Africa.
447 *South Afr. J. Sci.* 112, 1-8, doi: 10.17159/ sajs.2016/20150223, 2016.

448 Barrière, J., Oth, A., Theys, N., d’Oreye, N., Kervyn, F.: Long-term monitoring of long-period
449 seismicity and space-based SO_2 observation at African lava lake volcanoes Nyiarango and
450 Nyamulagira (DR Congo). *Grophys. Res. Let.* 44, 6020-6029, doi: 10.1002/2017GL073348, 2017.

451 Bauer, S.E., Im, U., Mezuman, K., Gao, C.Y.: Desert dust, industrialization, and agricultural fires:
452 health impacts of outdoor air pollution in Africa. *J. Geophys. Res.* 124, 4104-4120, doi:
453 10.1029/2018JD029336, 2019.

454 Bender, M.M.: Variations in the $^{13}\text{C}/^{12}\text{C}$ ratios of plants in relation to the pathway of
455 photosynthetic carbon dioxide fixation. *Phytochem.* 10, 1239-1244, doi: 10.1016.S0031-
456 9422(00)84324-1, 1971.

457 Bikkina, S., Andersson, A., Sarin, M.M., Sheesley, R.J., Kirillova, E., Rengarajan, R., Sudheer,
458 A.K., Ram, K., Gustafsson, Ö.: Dual isotope characterization of total organic carbon in wintertime
459 carbonaceous aerosols for northern India. *J. Geophys. Res.* 121, doi: 10.1002/2016JD024880,
460 2016.

461 Billmark, K.A., Swap, R.A., Macko, S.A.: Stable isotope and GC/MS characterization African
462 aerosols. *South African J. Sci.* 101, 177-170, 2005.

463 Birch, M.E., Cary, R.A.: Elemental carbon-based method for monitoring occupational exposures
464 to particulate diesel exhaust. *Aerosol Sci. Technol.* 25, doi: 10.1080/02786829608965393, 1996.

465 Bird, M.I., Cali, J.A.: A million-year record of fire in sub-Saharan Africa. *Nature* 394, 767-769,
466 doi: 10.1038/29507, 1998.

467 Blanchard, D.C., Woodcock, A. H.: The production, concentration, and vertical distribution of the
468 sea-salt aerosol. *Annal. N.Y. Acad. Sci.* doi: 10.1111/j.1749-6632.1980.tb17130.x, 1980.

469 Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner,
470 M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz,
471 M.G., Schultz, M., Venkataram, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke,
472 P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D.,
473 Storelvmo, T., Warren, S.G., Zender, C.S.: Bounding the role of black carbon in the climate
474 system: A systematic assessment. *J. Geophys. Res.* 118, 5380-5552, doi: 10.1002/jgrd.50171,
475 2013.

476 Brandt, M., Rasmussen, K., Penuelas, Tian, F., J., Schurgers, G., Verger, A., Mertz, O., Palerm,
477 J.R.B., Fensholt, R.: Human population growth offsets climate-driven increase in woody
478 vegetation in sub-Saharan Africa. *Nature Ecol. Evol.* 1, doi: 10.1038/s41559-017-0081, 2017.

479 Brito, J., Freney, E., Dominutti, P., Borbon, A., Haslett, S.L., Batenburg, A.M., Colomb, A.,
480 Dupuy, R., Denjean, C., Burnet, F., Bourriane, T., Deroubaix, A., Sellegri, K., Borrman, S. Coe,

481 H., Flamant, C., Knippertz, P., Schwarzenboeck, A.: Assessing the role of anthropogenic and
482 biogenic source on PM1 over southern West Africa using aircraft measurements. *Atmos. Chem.*
483 *Phys.* 18, 757-772, doi: 10.5194/acp-18-757-2018, 2018.

484 Cachier, H., Buat-Menard, P., Fontuge, M., Ranher, J.: Source terms and source strengths of the
485 carbonaceous aerosol in the tropics. *J. Atmos. Chem.* 3, 469-489, doi: 10.1007/BF00053872, 1985.

486 Cahoon, D.R., Stocks, B.J., Levine, J.S., Cofer III, W.R., O'Neil, K.P.: Seasonal distribution of
487 African savanna fires. *Nature*, 359, 812-815, doi: 10.1038/359812a0 , 1992.

488 Cais, P., Bombelli, A., Williams, M., Piao, S.L., Chave, J., Ryan, C.M., Henry, M., Brender, P.,
489 Valentini, R.: The carbon balance of Africa: synthesis of recent research studies. *Phil. Trans. Roy.*
490 *Soc. A* 369, 2038-2057, doi: 10.1098/rsta.2010.0328, 2011.

491 Das, O., Wang, Y., Hsieh, Y.-P.: Chemical and carbon isotopic characteristics of ash and smoke
492 derived from burning of C3 and C4 grasses. *Org. Geochem.* 41, 263-269,
493 doi: 10.1016/j.orggeochem.2009.11.001, 2010.

494 Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K., Sateesh, S., Asmi, E.,
495 Kesti, J., Backman, J., Salam, A., Singh Bisht, D., Tiwari, S., Hameed, S., Gustafsson, Ö.:
496 Photochemical degradation affects the light absorption of water-soluble brown carbon in the South
497 Asian outflow. *Sci. Adv.* 5, doi: 10.1126/sciadv.aau8066, 2019.

498 DeWitt, H.L., Gasore, J., Rupakheti, M., Potter, K.E., Prinn, R.G., Ndikubwimana, JdD., Nkusi,
499 J., Safari, B.: Seasonal and diurnal variability in O3, black carbon, and CO measured at the Rwanda
500 Climate Observatory. *Atmos. Chem. Phys.* 19, 2063-2078, doi: 10.5194/acp-19-2063-201, 2019.

501 Fang, W., Andersson, A., Zheng, M., Lee, M., Holmstrand, H., Kim, S-W., Du, K., Gustafsson,
502 Ö.: Divergent evolution of carbonaceous aerosols during dispersal of East Asian haze. *Sc. Rep.* 7,
503 doi: 10.1038/s41598-017-10766-4, 2017.

504 Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M.O.: Inorganic and
505 carbonaceous aerosols during the Southern African Regional Science Initiative (SAFARI 2000)

506 experiment: Chemical characteristics, physical properties, and emission data for smoke from
507 African biomass burning. *J. Geophys. Res.* 108. Doie: 10.1029/2002JD002408, 2003.

508 Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M.: Water-soluble
509 organic components in aerosols associated with savanna fires in southern Africa: Identification,
510 evolution and distribution. *J. Geophys. Res.* 108, doi: 10.1029/2002JD002324, 2003.

511 Gatari, M.J., Boman, J.: Black carbon and total carbon measurements at urban and rural sites in
512 Kenya, East Africa. *Atmos. Environ.* 8, 1149-1154, doi: 10.1016/S1352-2310(02)01001-4, 2003.

513 Graven, H.: Impact of fossil fuel emissions on atmospheric radiocarbon and various applications
514 of radiocarbon over this century. *Proc. Nat. Acad. Sci.* 112, 9542-9545, doi:
515 10.1073/pnas.1504467112, 2015.

516 Gustafsson, Ö., Kruså, M., Zencak, Z., Sheesley, R.J., Granat, L., Engström, E., Praveen, P.S.,
517 Rao, P.S.P., Leck, C., Rodhe, H.: Brown clouds over South Asia: Biomass or fossil fuel
518 combustion? *Science* 323, 495-498, doi: 10.1126/science.1164857, 2009.

519 Haslett, S.L., Taylor, J.W., Evans, M., Morris, E., Vogel, B., Dajuma, A., Brito, J., Batenburg,
520 A.M., Borrmann, S., Schneider, J., Schulz, C., Denjean, C., Bourrianne, T., Knippertz, P., Dupuy,
521 R., Schwarzenböck, A., Sauer, D., Flamant, C., Dorsey, J., Crawford, J., Coe, H.: Remote biomass
522 burning dominates southern West African air pollution during the monsoon, *Atmos. Chem. Phys.*
523 *Discuss.* doi: 10.5194/acp-2019-38, 2019.

524 Heft-Neal, S., Burney, J., Bendavid, E., Burke, M.: Robust relationship between air quality and
525 infant mortality in Africa. *Nature* 559, 254-258, doi: 10.1038/s41586-018-0263-3, 2018.

526 Hodnebrog, Ø., Myhre, G., Forster, P.M., Sillman, J., Samset, B.H.: Local biomass burning is a
527 dominant cause of the observed precipitation reduction in southern Africa. *Nature Com.* 7, doi:
528 10.1038/ncomms11236, 2015.

529 IPCC – Inter-Governmental Panel for Climate Change: AR5 Climate Change 2013: The physical
530 science basis. ISBN 978-1107661820, 2013.

531 IPCC – Inter-Governmental Panel for Climate Change: AR5 Climate Change 2014: Impacts,
532 adaptation and vulnerability. ISBN 978-1-107-68386-0, 2014.

533 Keeling, C.D.: The concentration and isotopic abundances of atmospheric carbon dioxide in rural
534 areas. *Geochem. Cosmochim. Acta.* 13, 322-334, doi: 10.1016/0016-7037(58)90033-4, 1958.

535 Kirchstetter, T.W., Novakov, T., Hobbes, P.V., Magi, B.: Airborne measurements of carbonaceous
536 aerosols in southern Africa during the dry biomass season. *J. Geophys. Res.* 108. Doi:
537 10.1029/2002JD002171, 2003.

538 Kirillova, E.N., Andersson, A., Sheesley, R.J., Kruså, M., Praveen, P.S., Budhavant, K., Safai,
539 P.D., Rao, P.S.P., Gustafsson Ö: ^{13}C and ^{14}C -based study of sources and atmospheric processing
540 of water-soluble organic carbon (WSOC) in South Asian aerosols. *J. Geophys. Res.* 118, 621-626,
541 doi: 10.1002/jgrd.50130, 2013.

542 Kirillova, E.N., Andersson, A., Han, J., Lee, M., Gustafsson, Ö.: Sources and light absorption of
543 water-soluble organic carbon aerosols in the outflow from northern China. *Atmos. Chem. Phys.*
544 14, 1413-1422, doi: 10.5194/acp-14-1413-2014, 2014.

545 Kulmala, M.: Build a global Earth Observatory. *Nature* 553, 21-23, 2018.

546 Lioussse, C., Assamoi, E., Criqui, C., Rosset, R.: Explosive growth in African combustion
547 emissions from 2005 to 2030. *Environ. Res. Lett.* 9, doi: 10.1088/1748-9326/9/3/035003, 2014.

548 Lipset-Moore, G.J., Wolff, N., Game, E.T.: Emissions mitigation opportunities for savanna
549 countries from early dry season fire management. *Nature Com.* 9, doi: 10.1038/s41467-018-
550 04687-7, 2018.

551 Lloyd, J., Bird, M.I., Vellen, L., Miranda, A.C., Veenendaal, E.M., Djagbletey, G., Miranda, H.S.,
552 Cook, G., Faruqhar, G.D.: Contributions of woody and herbaceous vegetation to tropical savanna
553 ecosystem productivity: a quasi-global estimate. *Tree Phys.* 28, 451-468, doi:
554 10.1093/treephys/28.3.45, 2008.

555 López-Ballesteros, A., Beck, J., Bombelli, A., Grieco, E., Lorenkova, E.K., Merbold, L.,
556 Brümmer, C., Hugo, W., Scholes, R., Vackar, D., Vermeulen, A., Acosta, M., Butterbach-Bahl,
557 K., Helmschrot, J., Kim, D.-G., Jones, M., Jorch, V., Pavleka, M., Skjelvan, I., Saunders, M.:
558 Towards a feasible and representative pan-African research infrastructure network for GHG
559 observations. *Environ. Res. Lett.* 13, doi: 10.1088/1748-9326/aad66c, 2018.

560 Lu, Z., Liu, X., Zhao, C., Meyer, K., Rajapakshe, C., Wu, C., Yang, Z., Penner, J.E.: Biomass
561 smoke from southern Africa can significantly enhance the brightness of stratocumulus over the
562 southeastern Atlantic Ocean. *Proc. Nat. Acad. Sci.*, 115, 2924-2929, doi:
563 10.1073/pnas.1713703115, 2018.

564 Maenhaut, W., Salma, I., Cafmeyer, J., Annegarn, H.J., Andreae, M.O.: Regional atmospheric
565 aerosols composition and sources in the eastern Transvaal, South Africa, and impact of biomass
566 burning. *J. Geophys. Res.* 101, 23631-23650, 1996.

567 Martinelli, L.A., Camargo, P.B., Lara, L.B.L.S., Victoria, R.L., Artaxo, P.: Stable carbon and
568 nitrogen isotopic composition of bulk aerosol particles in a C4 plant landscape of southeast Brazil.
569 *Atmos. Environ.* 36, 2427-2432, doi: 10.1016/S1352-2310(01)00454-X, 2002.

570 Marwick, T.R., Tamooh, F., Teofuru, C.R., Borget, A.V., Darchambeau, F., Bouillon, S.: The age
571 of river-transported carbon: global perspective. *Glob. Biogeochem. Cyc.* 29, 122-137, doi:
572 10.1002/2014GB004911, 2015.

573 Mkoma, S.L., Kawamura, K., Tachibana, E., Fu, P.: Stable carbon and nitrogen isotopic
574 compositions of tropical atmospheric aerosols: sources and contribution from burning of C₃ and
575 C₄ plants to organic aerosols. *Tellus B*, 66, 1-12, doi: 10.3402/tellusb.v66.20176, 2014.“

576 O'Leary, M.H.: Carbon isotopes in photosynthesis. *Bioscience* 38, 328–36, doi: 10.2307/1310735,
577 1988.

578 Palmer, P.I., Feng, L., Chevallier, F., Bösch, H., Somkuti, P.: Net carbon emissions from African
579 biosphere dominate pan-tropical atmospheric CO₂ signal. *Nature Com.* 10. doi: 10.1038/s41467-
580 019-11097-w, 2019.

581 Puxbaum, H., Rendl, J., Allabashi, R., Otter, L., Scholes, M.C.: Mass balance of the atmospheric
582 aerosol in a South African savanna (Nylsvley, May 1997). *J. Geophys. Res.* 105, 20697-20706,
583 2000.

584 Sheesley, R.J., Kirllova, E.N., Andersson, A., Kruså, M., Praveen, P.S., Budhavant, K., Safai, P.D.,
585 Rao, P.S.P., Gustafsson, Ö.: Year-round radiocarbon-based source apportionment of carbonaceous

586 aerosols at two background sites in South Asia. *J. Geophys. Res.* 117, doi:
587 10.1029/2011JD017161, 2012.

588 Sinha, P., Hobbs, P.V., Yokelson, R.J., Bertschi, I.T., Blake, D.R., Simpson, I.J., Gao, S.,
589 Kirchstetter, T.W., Novakov, T.: Emissions of trace gases and particles from savanna fires in
590 southern Africa. *J. Geophys. Res.* 108, doi: 10.1029/2002JD002325, 2003.

591 Still, C.J., Berry, J.A., Collatz, G.J., DeFries, R.S.: Global distribution of C₃ and C₄ vegetation:
592 Carbon cycle implications. *Glob. Biogeochem. Cyc.* 17, doi: 10.1029/200GB001807, 2003.

593 Swap, R.J., Annegard, H.J., Suttles, J.T., King, M.D., Platnick, S., Privette, J.L., Scholes, R.J.:
594 Africa burning: A thematic analysis of the Southern African regional science initiative (SAFARI
595 2000). *J. Geophys. Res.* 108, doi: 10.1029/2003JD003747, 2003.

596 Tiitta, P., Vakkari, V., Croteau, P., Beukes, J.P., van Zyl, P.G., Josipovic, M., Venter, A.D., Jaaros,
597 K., Pienaar, J.J., Ng, N.L., Canagaratna, M.R., Jayne, J.T., Kerminen, V.-K., Kokola, H., Kulmala,
598 M., Laaksonen, A., Worsnop, D.R., Laakso, L.: Chemical composition, main sources and temporal
599 variability of PM1 aerosols in southern African grassland. *Atmos. Chem. Phys.* 14, 1909-1927,
600 doi: 10.5194/acp-14-1909-2014, 2014.

601 Turekian, V. C., Macko, S., Swap, R. J. and Garstang, M.: Causes of bulk carbon and nitrogen
602 isotopic fractionations in the products of vegetation burns: laboratory studies. *Chem. Geol.* 152,
603 181-192, 10.1016/S0009-2541(98)00105-3, 1998.

604 Turnbull, J.C., Mikaloff Fletcher, S.E., Ansell, I., Brailsford, G.W., Moss, R.C., Norris, M.W.,
605 Steinkamp, K.: Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand:
606 1965-2014. *Atmos. Chem. Phys.* 17, 14771-14784, doi: 10.5194/acp-17-14771-2017, 2017.

607 UNDP – United Nations Development Programme: 2018 Africa Sustainable Development Report:
608 Towards a transformed and resilient continent. ISBN: 978-92-1-125134-0, 2018.

609 UNEP/WMO – United Nations Environment Programme/World Meteorological Organization:
610 Integrated assessment of black carbon and tropospheric ozone. ISBN: 978-92-807-3142-2, 2012.

611 Valintini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Cias, P.,
612 Grieco, E., Hartmann, J., Henry, M., Houghton, R.A., Jung, M., Kutsch, W.L., Malhi, Y.,
613 Mayorga, E., Merbold, L., Murray-Tortarolo, G., Papale, D., Peylin, P., Poulter, B., Raymond,
614 P.A., Santini, M., Sitch, S., Vaglio Laurin, G., van der Werf, G.R., Williams, C.A., Scholes, R.J.:
615 A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities.
616 Biogeosciences 11, 381-407, doi: 10.5194/bg-11-381-2014, 2014.

617 WHO – World Health Organization: Health effects of black carbon. ISBN: 978 92 890 0265 3,
618 2012.

619 WHO – World Health Organization: Ambient air pollution: A global assessment of exposure and
620 burden of disease. ISBN: 9789241511353, 2016.

621 Widory, D.: Combustibles, fuels and their combustion products: A view through carbon isotopes.
622 Combust. Theory Mod. 10, 831-841, doi: 10.1080/13647830600720264, 2006.

623 Wild, B., Andersson, A., Bröder, L., Vonk, J., Hugelius, G., McClelland, J.W., Song, W.,
624 Raymond, P.A., Gustafsson, Ö.: Rivers across the Siberian Arctic unearth the patterns of carbon
625 release from thawing permafrost. Proc. Nat. Acad. 116, 10280-10285, doi:
626 10.1073/pnas.1811791116, 2019.

627 Williams, C.A., Hanan, N.P., Neff, J.C., Scholes, R.J., Berry, J.A., Denning, S.A., Baker, D.F.:
628 Africa and the global carbon cycle. Carbon Bal. Manag. 2, 1-13, doi: 10.1186/1750-0680-2-3,
629 2007.

630 Winiger, P., Barrett, T.E., Sheesley, R.J., Huang, L., Sharma, S., Barrie, L.A., Yttri, K.E.,
631 Evangelou, N., Eckhardt, S., Stohl, A., Klimont, Z., Heyes, C., Semiletov, I.P., Dudarev, O.V.,
632 Charkin, A., Shakhova, N., Holmstrand, H., Andersson, A., Gustafsson, Ö.: Source apportionment
633 of circum-Arctic atmospheric black carbon from isotopes and modelling. Sci. Adv. 5, doi:
634 10.1126/sciadv.aau8052, 2019.

635 Yan, C., Zheng, M., Bosch, C., Andersson, A., Desyaterik, Y., Sullivan, A.P., Collett, J.L., Zhao,
636 B., Wang, S., He, K., Gustafsson, Ö.: Important fossil source contribution to brown carbon in
637 Beijing during Winter. *Sci. Rep.* 7, doi: 10.1038/srep43182, 2017.

638 **TABLES**

639 **Table 1.** Concentrations ($\mu\text{g m}^{-3}$; $\mu\text{gC m}^{-3}$ for carbonaceous components) of fine aerosol
640 components from ground-based and airborne measurements over Sub-Saharan Africa (bkg =
641 background).

Sampling site	TC	OC	BC/EC	WSOC	NO_3^-	SO_4^{2-}	NH_4^+	K^+
RCO, dry ^a	9.5 \pm 3.7	8.2 \pm 3.2	1.3 \pm 0.6	5.7 \pm 2.1	1.2 \pm 0.7	2.1 \pm 1.0	0.8 \pm 0.3	0.7 \pm 0.3
RCO, wet ^a	2.4 \pm 1.2	2.2 \pm 1.1	0.20 \pm 0.1	1.5 \pm 0.7	0.1 \pm 0.1	0.7 \pm 0.3	0.3 \pm 0.1	0.08 \pm 0.05
Rural Tanzania, dry ^b	7 \pm 2	6 \pm 2	1.0 \pm 0.3	4 \pm 1	0.18 \pm 0.06	0.2 \pm 0.1	0.9 \pm 0.7	1.5 \pm 0.7
Rural Tanzania, wet ^b	4 \pm 1	4 \pm 1	0.5 \pm 1.3	3 \pm 1	0.06 \pm 0.03	0.1 \pm 0.1	0.2 \pm 0.1	0.4 \pm 0.2
Aircraft, Southern Africa, smoke ^c	N/A	N/A	N/A	N/A	4.84 \pm 0.02	10.4 \pm 0.6	N/A	13.1 \pm 0.1
Aircraft, Southern Africa, bkg ^c	N/A	N/A	N/A	N/A	0.48 \pm 0.00	2.2 \pm 0.1	N/A	0.31 \pm 0.02
Aircraft, Southern Africa fresh ^d	N/A	20 \pm 18	2 \pm 1	N/A	1.4 \pm 1.8	1.9 \pm 1.4	1.6 \pm 2.4	4.5 \pm 8.1
Aircraft, Southern Africa aged ^d	N/A	6 \pm 3	1.03 \pm 0.04	N/A	1.0 \pm 0.8	2.0 \pm 1.5	0.9 \pm 0.8	0.6 \pm 0.4
Aircraft, Southern Africa, plume ^e	106 \pm 86	91 \pm 74	15 \pm 12	N/A	N/A	N/A	N/A	N/A
Aircraft, Southern Africa haze ^e	10.5 \pm 8.2	9.5 \pm 6.8	2.3 \pm 1.8	N/A	N/A	N/A	N/A	N/A
Aircraft, Southern Africa ^f	8.5 \pm 4.8	N/A	2.3 \pm 1.9	N/A	0.8 \pm 0.3	4.5 \pm 3.6	N/A	0.4 \pm 0.1
National Park, South Africa ^g	N/A	N/A	1.2 - 2.2	N/A	N/A	N/A	N/A	0.22 - 0.34
Savanna, South Africa ^h	9.1	N/A	0.61	N/A	0.4	11.08	2.85	0.28
Aircraft, W. Africa, bkg ⁱ	N/A	N/A	0.33 - 0.35	N/A	0.11 - 0.12	1.64 - 1.70	0.63 - 0.68	N/A
Aircraft, W. Africa, urban plume ⁱ	N/A	N/A	0.64 - 0.72	N/A	0.49 - 0.53	2.70 - 3.03	1.20 - 1.38	N/A
Grassland, South Africa, dry ^j	N/A	N/A	0.6	N/A	0.3	1.4	0.2	N/A
Grassland, South Africa, wet ^j	N/A	N/A	0.3	N/A	0.2	0.4	0.3	N/A
Savanna, South Africa, spring ^k	N/A	N/A	0.40	N/A	0.05	2.48	0.05	0.17
Savanna, South Africa, summer ^k	N/A	N/A	0.16	N/A	0.01	5.65	0.01	0.2

642 a. Present study
643 b. Mkoma et al., 2014
644 c. Gao et al., 2003
645 d. Formenti et al., 2003
646 e. Kirchstetter et al., 2003
647 f. Sinha et al., 2003
648 g. Maenhaut et al., 1996
649 h. Puxbaum et al., 2000
650 i. Brito et al., 2018
651 j. Tiitta et al., 2014
652 k. Aurela et al., 2016

653 **FIGURES**

654

655

656 **Figure 1.** Fire counts and air mass back trajectories for the October 2014 to September 2015
657 campaign at the Rwanda Climate Observatory (RCO, black and white circle). The fire counts are
658 from the Fire Information for Resource Management System (FIRMS) derived from the NASA
659 Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product for June-July-August
660 (JJA), 2015. The thin lines represent daily (3AM, C.A.T.) 7-day air mass back-trajectories arriving
661 at RCO. The blue lines correspond to what we here refer to the ‘wet’ period (October-November
662 2014 and April-May 2015), whereas the black lines represent the dry JJA period.

663

664

665

666 **Figure 2.** Concentrations of carbonaceous aerosols (TC = total carbon; EC = elemental carbon;
667 OC = organic carbon; WSOC = water-soluble organic carbon) and inorganic ions in PM_{2.5} during
668 October 2014 to September 2015 at the Rwanda Climate Observatory. The November 2014 to
669 April 2015 gap is due to a lightning strike. The concentrations of EC were multiplied by 5 and K⁺
670 by 2 for visual clarity.

671

672 **Figure 3.** Ratios of carbonaceous aerosols (EC = elemental carbon; OC = organic carbon; WSOC
673 = water-soluble organic carbon) and inorganic ions relative to total carbon (TC) in $\text{PM}_{2.5}$ during
674 October 2014 to September 2015 at the Rwanda Climate Observatory. The November 2014 to
675 April 2015 gap is due to a lightning strike. The concentrations of K^+/TC and NH_4^+/TC ratios were
676 multiplied by 2 for visual clarity.

677

678 **Figure 4:** Dual carbon isotope data for TC. Panel A. $\Delta^{14}\text{C}$ vs time. Panel B. $\delta^{13}\text{C}$ vs time. Panel C.
679 $\Delta^{14}\text{C}$ vs TC (blue circles). The black line is the fit of the equation $\Delta^{14}\text{C} = A/[\text{TC}] + B$, using Markov
680 chain Monte Carlo simulations, where A and B are fitting parameters ($A = -135 \pm 16 \text{‰ } \mu\text{g m}^{-3}$; $B =$
681 $37 \pm 6 \text{‰}$). The grey shaded area is the 1σ spread of the fit.

682

683

684 **Figure 5:** Dual carbon ($\Delta^{14}\text{C}$ vs $\delta^{13}\text{C}$) isotope plot of TC. Blue circles represent Oct-Nov 2014
685 (wet), yellow circles Apr-May 2015 (wet), and red circles Jun-Sept 2015 (dry). The boxes
686 represent the endmember ranges (mean \pm stdev; see Section 3.5) of the three main sources: C₃-
687 plants (green), C₄-plants (orange), and fossil (black).

688

689

690

691

692 **Figure 6:** Carbon isotope-source segregated fractions and concentrations of TC vs time. Panel A.
693 Relative source contributions (%) of C₃-plants (green circles), C₄-plants (orange diamonds) and
694 fossil (black triangles). The error bars (standard deviations) were constrained using Markov chain
695 Monte Carlo simulations. Panel B. Source segregated concentrations of TC of C₃-plants (green
696 circles), C₄-plants (orange diamonds) and fossil (black triangles).

